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Abstract— Ensuring performance isolation and differen-
tiation among workloads that share a storage infrastructure
is a basic requirement in consolidated data centers. Existing
management tools rely on resource provisioning to meet
performance goals; they require detailed knowledge of the
system characteristics and the workloads. Provisioning is
inherently slow to react to system and workload dynamics,
and in the general case, it is impossible to provision for
the worst case.

We propose a software-only solution that ensures pre-
dictable performance for storage access. It is applica-
ble to a wide range of storage systems and makes no
assumptions about workload characteristics. We use an
on-line feedback loop with an adaptive controller that
throttles storage access requests to ensure that the available
system throughput is shared among workloads according
to their performance goals and their relative importance.
The controller considers the system as a “black box” and
adapts automatically to system and workload changes. The
controller is distributed to ensure high availability under
overload conditions, and it can be used for both block
and file access protocols. The evaluation of Triage our
experimental prototype, demonstrates workload isolation
and differentiation, in an overloaded cluster file-system
where workloads and system components are changing.

I. INTRODUCTION

Resource consolidation in large data centers is a cur-
rent trend across the IT industry and is mostly driven by
economy-of-scale benefits. Consolidation is performed
either within an enterprise or in hosting environments. In
these data centers, storage systems are shared by work-
loads of multiple “customers”. It is important to ensure
that customers receive the resources and performance
they are entitled to. More specifically, the performance
of workloads must be isolated from the activities of
other workloads that share the same infrastructure. Fur-
thermore, available resources should be shared among
workloads according to their relative importance.

Existing state-of-the-art management tools rely on
automatic provisioning of adequate resources to achieve
certain performance goals [1]. Although resource pro-
visioning is necessary to meet the basic performance
goals of workloads, it cannot handle rapid workload
fluctuations and system changes. It is an inherently
expensive and slow process—think of setting up servers,
configuring logical volumes in disk arrays, or migrating

data. Furthermore, it is too expensive to provision for
the worst case scenario. In fact, it may be impossible
to do that, since the worst-case scenario is typically
not known a priori. In our work, we ensure predictable
performance of storage systems by arbitrating the use of
existing resources under transient high-load conditions
in a way that complements provisioning tools.

A. Resource arbitration

In this paper, we focus on storage system throughput
as the key resource that is shared by the workloads.
Throughput reflects the capacities of different physical
resources in the system, such as server or controller
utilization and network bandwidth. Throughput sharing
is arbitrated by throttling storage access requests of dif-
ferent workloads. That is, requests from each workload
are withheld somewhere on the data path and are released
with a rate that complies with the targeted throughput for
that workload.

The way to arbitrate the use of critical resources
should depend on the behavior of system components,
their configuration, as well as workload dynamics. How-
ever, enterprise-scale storage systems are large (with
capacities often in the 100s of TBs), distributed, and
increasingly heterogeneous, with constantly evolving
hardware and software. Their workloads are complex
consisting of multiple overlapping 1/0 streams with
unpredictable request patterns. Thus, it is impractical
to devise models of such systems off-line to make
performance predictions, as has been proposed in the
literature [2], [3], [4], [5], [6].

B. A control-theoretic approach

Because of the above observations, our approach is
based on the assertion that the storage system must be
considered as a “black box”. We assume no prior knowl-
edge of the behavior of the system and its components,
or the workloads applied to it, except that an increase in
throughput generally results in higher request latencies
and that the order of the system model is known. We
solely depend on on-line performance monitoring from
outside the system to infer system models and perform
workload arbitration accordingly.
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More specifically, we use an on-line feedback loop
that includes a controller that makes throttling decisions
based on the relationship between throughput and latency
in the system. While the response latencies are within the
specified goals for all workloads, the controller gradually
increases the number of requests allowed to fully utilize
the system. As soon as at least one workload’s latency
goal is violated, the controller starts throttling requests
back according to a specified resource sharing policy.

To compensate for the lack of known models and
to ensure stability and system performance, we use a
control-theoretic approach for designing the feedback
loop. In particular, we use a direct self-tuning adaptive
controller, the parameters of which adapt on-line to
system and workload dynamics, without prior tuning.

Existing systems that apply control theory to computer
systems (LotusNotes [7], Apache [2], [8], [9]. [3]. [5],
[6], Squid [10], middleware [11], file server [12]) use
non-adaptive controllers that are designed off-line. Other
systems [13], [14], [15], [16], [17], [18], [19], [20], [21]
that do not use control theory still require prior tuning
(because they are non-adaptive) and/or modifications to
the target system. Storage systems demonstrate different
non-linear behavior depending on system configuration
and workloads. For example, a workload that retrieves
data from an internal cache has very different behavior
from one that gets data from a disk. In an extended
version of this paper [22], we show that, in the gen-
eral case, it is not possible to design a well behaved
non-adaptive linear controller with parameters that are
applicable to all different operating ranges of a black-
box storage system, because of the large variability in
the operating ranges. The use of such a controller would
result in long settling times or even instability of the
system when the operating range changes. This precludes
the use of any of the prior-art mentioned.

There are two recent cases in the literature where
an adaptive controller is used to control either appli-
cation performance for web cache access [23] or CPU
utilization in a distributed system [24]. Both those solu-
tions are based on a centralized controller and require
modifications of the controlled system. In our case,
no modifications are required for the target system. In
the current prototype, Triage, throttling is performed on
the clients. It can be implemented either by modifying
the storage access protocol or transparently in a vir-
tualization layer (e.g., a logical volume manager or a
virtual machine monitor). In addition, Triage does not
require any centralized point of control. The controller
is implemented in a distributed fashion with a module on
each client. The only other distributed control loop we
are aware of [25] is based on a non-adaptive controller.

Il. SPECIFYING PERFORMANCE OBJECTIVES

As discussed in section |, this paper proposes an on-
line feedback loop that performs resource arbitration
among workloads that compete for access to a shared
storage infrastructure. This is done with two objectives.
The first is to achieve performance isolation among the
workloads. That is, a workload should obtain sufficient
resources for the performance it is entitled to, irrespec-
tive of the behavior of other workloads in the system.
Since it is impossible to provision the system sufficiently
for the worst-case scenario, the second objective is to
provide performance differentiation among workloads
under overload conditions. In that case, resources should
be shared among workloads on the basis of two crite-
ria: 1) their relative importance; 2) the resources they
already consume. We propose specifying two types of
performance goals for each workload:

1) A latency goal that should be met for all workload
requests. This latency goal depends mostly on
the characteristics of the corresponding application
(timeouts, tolerance to delays, etc).

2) A maximum throughput allotment for which the
system should ensure isolation for the workload.
This is the maximum throughput the customer is
willing to “pay” for.

These are both soft goals. Further, we have to capture the
relative importance of different workloads for the cases
when the available system capacity cannot satisfy the
maximum throughput allotments of all workloads. We
observe that users do not assign the same importance
to the entire range of throughput they require for their
workloads. For example, the first few tens of 10/s are
very important for the application to make progress.
Above that, the value customers assign to the required
throughput typically declines, but with different rates
for various workloads. To capture such varying cost
functions for throughput, we specify a number of bands
for the available system throughput.

The details of how to specify workload throughput
allotments can be best explained with an example. Con-
sider a system with just two workloads. A business crit-
ical workload W1 demands up to 350 10/s, irrespective
of other workload activities. Another workload W2 (e.g.,
one performing data mining) requires up to 550 10/s. W2
is less important than W1, but it still requires at least 50
I10/s to make progress; otherwise the application breaks.
So will W1, if it does not get 50 10/s. To satisfy the
combined throughput requirements of the two workloads,
we specify three bands for throughput sharing, as shown
in Table I. According to the specification, the first

Iperformance goal specifications for workloads are derived from
high-level application goals or service level agreements. The way this
mapping is performed is outside the scope of this paper.
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100 10/s in the system are shared equally between the
two workloads, so that both can make progress. Any
additional available throughput up to a total of 400 10O/s
is reserved for W1. Thus, W1’s 350 IO/s are met first.
Any additional available throughput is given to W2 until
its 550 10/s goal is met. Any further throughput in the
system is shared equally between the two workloads.

TABLE |
EXAMPLE OF TWO WORKLOADS SHARING THE SYSTEM
ACCORDING TO THREE THROUGHPUT BANDS. THE TOP ROW
SHOWS THE TOTAL SYSTEM THROUGHPUT IN EACH BAND; THE
TWO ROWS BELOW SHOW THE RATIO BY WHICH THE TWO
WORKLOADS SHARE THAT ADDITIONAL THROUGHPUT.

| [Band 0 | Band 1 | Band 2 |
[ aggr. throughput (I0/s) ] 0-100 | 100-400 | 400-900 |

workload 1 50% 100% 0%
workload 2 50% 0% 100%

In general, any number of bands can be defined for
any number of workloads that may share the system,
following the principles of this example. If the system’s
capacity at some instance is sufficient to meet fully
all throughput allotments up to band ¢, but not fully
the allotments of band ¢ + 1, then we say that the
“system is operating in band ¢ + 1”. Any throughput
above the sum of the throughputs of bands 0..¢ is shared
among the workloads according to the ratios specified
in band 7 + 1. The total available throughput indicates
the “operating point” of the system. With 500 10O/s total
system throughput in our example, the operating point
of the system is 20% in band 2.

In addition, the latency target of each workload should
be met in the system. At some instance in time, the
system is operating in a band i. As soon as the latency
goal of at least one workload with a non-zero throughput
allotment in any band j, j < 4, is violated, the system
must throttle the workloads back until no such violations
are observed. Throttling within the specifications of band
+ may be sufficient, or the system may need to throttle
more aggressively down to some band &, k < i. On the
other hand, it is desirable to utilize the system’s available
throughput as much as possible. Therefore, when the
system is operating in band ¢ and the latency goals of all
workloads with non-zero throughput allotments in bands
0..; are met, the system can let more requests through.
This may result in the system operating in a band m,
m > 1.

I11. DESIGNING A CONTROL LOOP

This section describes the design of the feedback loop

for request throttling in the context of a client-server

system that is typical of enterprise storage systems, irre-
spective of the storage access protocol used. The system

controller
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Fig. 1. Feedback loop for client request throttling.

consists of a number of storage servers and a number of
client nodes that access data on the servers. One or more
workloads may originate from a client. For simplicity, we
assume that there is a 1:1 mapping between clients and
workloads. Examples of such systems include network
file systems [26], cluster file systems [27], or block-
based storage [28]. For the discussions in this paper, we
use an installation of a cluster file system, Lustre [27],
with 8 clients and 1 or 2 servers.

The objective is to design a feedback controller that
arbitrates the usage of system throughput by throttling
client requests according to the specifications of the
throughput bands and the latency goals. Since we cannot
instrument the system to either perform throttling or
to obtain measurements, we require that the feedback
loop depends merely on externally observed metrics
of the system’s performance, i.e., response latency and
throughput.

Figure 1 shows an abstract representation of the feed-
back loop. In the figure, y(k) is the observed latency
of the system averaged over some sampling period, the
length of which is specified by a system identification
process [22]. The input to the closed-loop system, yy,.¢,
is the reference value for y(k). Based on the difference
between y (k) and y, ¢, the controller actuates the system
by setting the operating point w(k). This is the maximum
aggregate throughput allowed to be obtained from the
system. Enforcing this maximum throughput requires
that a throttling module intercepts requests somewhere
on the data path—it could be either on the clients or
somewhere on the network. No assumption is made
about the exact location of the controller itself. However,
from a practical perspective, it is desirable that: 1) the
controller reacts to end-to-end latencies as perceived
by the application, since these capture overall system
capacity, including for example storage area network
bandwidth; 2) the controller is designed in a decen-
tralized way to ensure it is highly available even in an
overloaded system (which is exactly what the feedback
loop is designed to address).

In practice, there is a feedback loop for each
client/workload in the system. There are a controller and
a throttler module on each client. The reference input to
the controller is the latency goal for this client’s work-
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load and the error is estimated locally. The controller
calculates locally the operating point of the system, from
its own perspective. The corresponding share for the
local workload is derived from the throughput bands
specification—all clients know that table. This does not
create any strict synchronization requirements among
clients, as this table changes infrequently. The controller
modules in the different clients have to agree on the
lowest operating point, as this is used across all clients.
(If the minimal value was not used, some clients might
send too many requests and violate isolation.) This
requires some simple agreement protocol among the
clients, that is executed once every sampling period. For
example, a specific client (e.g., the one with the smallest
id) calculates the operating point locally and sends it
to all other clients; other clients respond to the group
only if they have calculated a lower value than that (the
details of such a protocol are outside the scope of this
paper). The throttler imposes a maximum request rate
for outgoing requests from the corresponding client.

A. Infeasibility of non-adaptive control

A first option for a controller design would be to
use classical linear, non-adaptive control, because it is
relatively easy to argue about stability and performance
of the closed-loop system. Non-adaptive controller de-
sign relies on the assumption that the system can be
adequately described by one single linear model. In
our case, this refers to the function between throughput
and latency. Unfortunately, storage systems typically
change a lot, either because of the dynamics of multiple
concurrent workloads, data being fetched from devices
of varying speed (e.g., cache versus disk) or because
of changes in the configuration of the system itself. The
models for these cases differ significantly [22]. A stable,
conservative design would lead to unacceptably long
settling times; a more aggressive controller wold lead to
instability [22]. We cannot even design a separate non-
adaptive controller for each possible operating range of
a realistic system, because such operating ranges are not
known a priori.

IV. DESIGNING AN ADAPTIVE CONTROLLER

We conclude from the previous section, that for a
black-box storage system, we need to dynamically adapt
the controller as the operating range of the system
changes. This is exactly what adaptive control theory can
be used for. Such controllers adapt on-line to system
dynamics in two stages. First, they estimate a system
model using an on-line system identification process.
Second, they design on-line an appropriate controller for
the current system model. In practice, on-line closed-
loop design using these two steps may be time con-
suming and may result in poorly conditioned loops for

some parameter values. Instead, we use a direct self-
tuning regulator [29] as our adaptive controller. These
controllers estimate the system model and controller in
a single step, resulting in better adaptivity as well as
lower computational complexity. A block diagram of the
feedback loop with the adaptive controller is shown in
Figure 1.

A. Analysis of the adaptive closed loop

The main idea behind a direct self-tuning regulator
is to estimate a system model that directly captures the
controller parameters. In order to construct the control
law, the adaptive controller first needs to estimate a
model for the system that can be turned into a controller.
We will show how to do this, by starting from the
following generic model.

y(k) =s1y(k —1) +ru(k—1) +reu(k —2) (1)

This is the model of the system from the perspective
of the controller. That is, the measured latency, y(k), is
a function of the previous actuator settings and latency
measurements. We have found that y(k) sampled at 1
second sample intervals captures sufficiently the system
dynamics [22]. We have also found, using a number of
different model fitting metrics, that a first-order model
describes accurately our target system [22]. However, in
order to form a direct self-tuning regulator of a first-order
system, we need to start from (1) which is a second-
order model. The reason for this will be explained in
the following paragraph.

The model parameters of (1) are estimated using a
Recursive Least-Squares (RLS) estimator, an on-line ver-
sion of the well-known least-squares regression process.
To turn this model into a controller, we observe that
a controller is a function that returns u(k). If we shift
equation (1) one step ahead in time and solve for u(k),
we get:

u(k) = y(k+1) - Ly - Zutk-1) @
1 1 T1

If this equation is to be used to calculate the actuation
setting u(k), then y(k + 1) represents the desirable
latency to be measured at the next sample point at time
k+1,ie., itis yrep. Thus, the final control law is:

1 S1 T2

u(k) = Eyref - Ey(k) - Eu(k -1) (3)

The stability of the proposed adaptive controller can
be established using a variation of a well-known proof
from the literature [29]. That proof applies to a simple
direct adaptive control law that uses a gradient estimator.
In our case, however, we have a least-squares estimator.
The proof is adapted to apply to our estimator by ensur-
ing persistent excitation so that the estimated covariance
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if < MINREQ requests
exit
estimate new model parameters
current model = new model + A * old model
if new model very different from old model
discard old model
U(k) = Umaz
exit
if sign of current model negative or r; = 0
10 current model = old model
11 set w*(k) according to current model
12 ifu*(k) <0

©CO~NOUTAWN P

13 u(k) =0

14 else if u*(k) > Umaz
15 u(k) = Umaz

16 else

17 u(k) = u*(k)

18 old model = current model

Fig. 2. Pseudo-code description of adaptive controller.
matrix stays bounded. The rest of the proof steps remain
the same. For the proof to be applicable, the closed-
loop system must satisfy all the following properties:
(i) the delay d (number of intervals) by which previous
controller outputs w(k) affect the system is fixed and
known; (ii) the zeroes (roots of the nominator) of the
system’s transfer function are within the unit circle; (iii)
the sign of 1 is known; and (iv) the upper bound on the
order of the system is known. For our system, d = 1,
the zeroes of the system are at zero, ry > 0, and
we know that our system can be described well by a
first-order model. Given that these conditions hold, the
proof shows that the following are true: (a) the estimated
model parameters are bounded; (b) the normalized model
prediction error converges to zero; () the actuator setting
u(k) and system output y(k) are bounded; (d) the
controlled system output y(k) converges to the reference
value y,.r. Therefore, our closed-loop system with the
direct self-tuning regulator is shown to be stable, and
the system latency converges to the reference latency in
steady state. The details of the stability proof can be
found in the extended version of this paper [22].

B. Adaptive controller design

In this section, we describe the operation of the
adaptive controller in detail. We discuss a number of
heuristics we use to improve the properties of the closed
loop, based on knowledge of the specific domain. Using
the pseudo-code of Figure 2, we go through all the steps
of the on-line controller design process and provide the
intuition behind each step.

First, in line 1, the algorithm applies a so-called
conditional update law [29]. It checks whether there are
enough requests in the last sample interval for it to be
statistically significant—MINREQ requests are required
(MINREQ = 6 in the current prototype). Otherwise, nei-
ther the model parameters are modified nor the actuation

is computed. To avoid potential system deadlock when
all controllers decide not to do any changes (e.g., the
system becomes suddenly slow because of a component
failure), one random controller in the system does not
execute this if-statement. This ensures that at least one
control loop is always executed and affects the system.

At every sampling period, the algorithm performs
an on-line estimation of the model of the closed-loop
system (equation (1)), as described in Section IV-A.
That is, it estimates parameters s;, r; and ry using
least-squares regression [29] on the measured latencies.
As a model derived from just one sample interval is
generally not a good one, the algorithm uses a model
that is a combination of the previous model and the
model calculated from the last interval measurements.
The extent that the old model is taken into account is
governed by a forgetting factor A,0 < A < 1.

When the system changes suddenly, the controller
needs to adapt faster than what the forgetting factor A
allows. This is handled by the reset law of line 5. If any
of the new model parameters differ more than 30% from
those of the old model, the old model is not taken into
account at all. To ensure sufficient excitation so that a
good new model can be estimated, u(k) is set to its
maximum value ... In the down side, this results
in poor workload isolation and differentiation for a few
sample intervals. However, it pays off, as high excitation
means a better model and thus shorter settling times.

There is a possibility that the estimated model predicts
a behavior that we know to be impossible in the system.
Specifically, it may predict that an increase in throughput
results in lower latency or that ; = 0. This is tested in
line 9. As this can never be the case in computer systems,
the algorithm discards the new model and uses the one
from the previous interval instead. Even if such a wrong
model was allowed to be used, the controller would
eventually converge to the right model. By including this
test, the controller converges faster.

Finally, the new operating point u(k) is calculated
in line 11 using equation (3) with the current model
estimates. However, we need to make sure that the
controller does not set u(k) to an impossible value, either
u(k) < 00ru(k) > Umqe. This is checked using an anti-
windup law, in line 12. In those cases, the value of u(k)
is set to 0 and w4, respectively. Not having this anti-
windup safeguard might make the controller unstable if
it spent several sample periods with values below O or
above umq. [29]. An iteration of the algorithm completes
with updating the old model with the new one in line 18.

V. EXPERIMENTAL RESULTS

In this section, we use experimental results to confirm
the analytical arguments made in Section IV. We demon-
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time 10 s. Two workloads are considered, a cache-bound one and a disk-bound one, each with its own latency goal.

strate the following points about the proposed adaptive
controller:

« Its performance is comparable to a non-adaptive
controller that has been specifically designed for
the current operating range of the system.

« Itachieves performance isolation and differentiation
among workloads according to performance goals
specified as in Section II.

o It performs well in the face of sudden changes to
either system, performance goals, or workloads.

We evaluate the proposed adaptive controller in a
Lustre installation. Lustre is a cluster file system for
Linux that is designed to achieve high aggregate through-
puts. For the experiments, we use either one or two
servers and eight client nodes. All nodes are of the same
hardware configuration: 2x PIlIl CPUs at 1 GHz, 2 GB
RAM, and one directly attached Seagate 36GB SCSI
Ultral60, 15K rpm hard disk. All nodes are running a
RedHat Linux installation using kernel version 2.4.20
with Lustre-specific patches.

As before, we assume a workload per client. All
the experiments involve synthetic workloads that can
be manipulated as required for the points we need to
make. We use 10zone [30] as our workload generator,
augmented with an implementation of our throttler. Each
client starts an 10zone process that synchronously issues
request as fast as the throttler allows it to.

We first compare the performance of our adaptive
controller with that of a non-adaptive controller that
could have been designed off-line for a specific operating
range, assuming that the system remains within that
operating range (see [22] for details on the non-adaptive
controller). Figure 3 shows that the two controllers are
indistinguishable in practice. The adaptive controller
has settling times and overshoot comparable to that
of the non-adaptive controller (approximately 2-3 s).
Both controllers result in higher oscillation with the
random disk-bound workload, since latencies are more

40
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Fig. 4. The performance of the adaptive controller when the workload
changes from disk to cache-bound. The latency goal is also changed
to demonstrate the adaptability of the model estimation. The workload
as well as its latency goal change at time 40 s.

unpredictable in that case. In conclusion, there is no
performance penalty due the on-line estimation of the
adaptive controller’s parameters.

Figure 4 demonstrates how fast the adaptive controller
adapts to sudden system changes. In this case, the work-
load characteristics change dramatically—the workload
turns from an all-in-disk to an all-in-cache data set.
To demonstrate adaptability, we also change the latency
goal of the workload at the same time, since a more
aggressive goal is feasible with the all-in-cache data set.
The adaptive controller traces the change and the new
performance goal of the workload is met within 3 s.

Figure 5 demonstrates performance isolation between
two workloads that compete for system throughput.
Initially, no throttling is happening and the latency
goals of both workloads are violated. The right figure
shows the throughput goals of the two workloads—
these reference values represent the aggregate throughput
goal for each workload as specified by the throughput
bands (Section II), that is achievable with the current
system capacity. Before the controller is activated, the
throughout goal of workload 2 is exceeded by more

www.manaraa.com



12i ) Reference 1
117 — Workload 1
10 --- Reference 2
= I ---- Workload 2
£ 9
5\ L N S
§ 3
T o
— 4t
3,
2,
1,
0 10 20 30 40
Time (s)
Fig. 5.

than 6x, while the goal of workload 1 is not met.
Within approximately 2 s from the moment the controller
is enabled, the available system throughput is shared
between the two workloads according to their specifi-
cations. The latency goals of both workloads are also
satisfied. In fact, it can be seen, that the aggregate (for
both workloads) achievable system throughput with the
controller enabled is approximately 150 10/s less than
the aggregate throughput obtained from the uncontrolled
system. The reason is that the workloads are throttled
so that they meet their latency goals. Higher throughput
(even though there is some available capacity in the
system) would result in violation of the latency goals,
due to queuing delays.

Figure 6 demonstrates differentiation between two
workloads, when the capacity of the system is not suffi-
cient to meet the goals of both workloads. It also shows
how the controller adapts when the system capacity
changes. The performance goals of the two workloads
are specified in Table I.

Initially, the data is placed on just one server, which
can provide only up to 500 10/s while satisfying the
latency goals of both workloads, which are 4 and 5 ms
respectively. According to Table I, the system operates
in the beginning of band 2. That is, workload 1 gets all
its approximately 350 10/s due to 50 10/s from band O
and 300 10/s from band 1; workload 2 gets 50 10/s from
band 0 and just some of the 10/s from band 2.

At time 30 s, the system’s capacity is doubled by
adding an additional server. The data is now striped
across both servers? and both workloads are load-
balanced evenly across the two servers. The new system
has higher performance, being able to provide close to
700 10/s while it meets the latency goals of the two
workloads. Thus, the system now operates at the end of
band 2. The estimated model adapts fast to the change
(due to the reset law of Figure 2) and the controller

2The size of the data sets for this experiment is small, just a few MB.
Thus, the migration of the data to the new configuration is essentially
instantaneous—happens within a few ms.
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Latency and throughput isolation when running two cache-bound workloads. The controller is enabled at time 10 s.

changes the throttling performed on workload 2 within
2 s from system reconfiguration.

VI. CONCLUSION

This paper proposes a technique for achieving per-
formance isolation and differentiation among multiple
workloads that share the same storage infrastructure,
a common problem in consolidated data centers. The
proposed solution is based on a distributed adaptive
controller that throttles workloads according to their
performance goals and their relative importance. The
controller considers the storage system as a black box,
which makes the solution applicable to a wide range
of systems, and it adapts automatically to system and
workload dynamics.

The paper argues that an adaptive control law is the
only appropriate generic way to control a storage system.
A non-adaptive controller is not sufficient in our case.
We cannot even design a separate non-adaptive controller
for each possible operating range of the system, because
such operating ranges are not known a priori. Storage
systems are large and complex; in general, their perfor-
mance behavior and workloads cannot be predicted.

In this paper, we demonstrate the feasibility and design
of an adaptive controller. We do not claim that this
is the best adaptive controller to be used for black-
box storage systems. As a topic for future research,
more complex and possibly faster adaptive controllers
should be evaluated. However, our arguments about the
necessity of adaptive controllers are generally applicable,
because of the inherent characteristics of large storage
systems and their workloads.
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